時間:2019-11-04 10:14
來源:VOCs減排工作站
檢測原理
基于痕量VOCs氣體成份對光輻射(紫外/可見)的“指紋”特征吸收,實現定性和定量測量,可同時測量多種氣體成份。
優點
● 測量精度高,檢測下限低;
● 非接觸測量,不改變被測氣體的性質和濃度;
● 可實時、連續、長期運行,操作簡單,運行成本低;
● 可同時監測多種污染氣體;
● 遠距離遙測、監測范圍廣,數據具有代表性 。
應用
以其高分辨率和高精度并可同時對多種氣體進行測試的優點,廣泛應用于城市空氣質量監測,排放源氣體監測等場合。
四、紅外吸收檢測儀
傅里葉紅外多組分氣體分析儀(開放式)
檢測原理
儀器通過對大氣痕量氣體成分的紅外輻射 “指紋” 特征吸收光譜測量與分析,實現對多組分氣體的定性和定量在線自動監測。
其工作原理為光譜儀的光學鏡頭接收來自紅外光源發射的紅外輻射,輻射的紅外線在開放或密閉的空氣中傳播.
光譜儀接收到的紅外輻射后,經由干涉儀的調制被紅外探測器檢測,再由光譜儀的電子學部件和相應數據處理模塊完成干涉圖的轉換和存儲,并通過傅里葉變換,將干涉圖轉換成紅外光譜。
優點
可以定量和定性分析,測定快速、不破壞試樣、試樣用量少、操作簡便、分析靈敏度較高。
五、激光檢測儀
檢測原理
采用可調諧半導體激光吸收光譜(TDLAS)氣體分析技術。與傳統紅外光譜技術相同,TDLAS 氣體分析技術本質上是一種吸收光譜技術,通過分析所測光束被氣體的選擇吸收獲得氣體濃度。
但與傳統紅外光譜技術不同,TDLAS 氣體分析技術采用的半導體激光光源的光譜寬度遠小于氣體吸收譜線的展寬。
因此,TDLAS 技術具有非常高的光譜分辨率,可以對某一特定氣體的吸收譜線(常被稱為單線光譜分析技術)進行分析獲得被測氣體濃度。
優點
TDLAS技術具有靈敏度高、選擇性好、實時、動態等特點,利用波長調制技術在 1 s 的檢測時間內檢測限可達到ppm級甚至ppb 級;同時可以在高溫、高壓、高粉塵及強腐蝕環境下測量,因此成為了惡劣條件下氣體污染物在線監測的首要選擇。
不足
甲醛等低分子量物質,對空氣中其它危害性較大的痕量 VOCs 成分的選擇性監測存在一定的困難。
VOCs檢測儀對比
GC-FID檢測技術對大部分VOCs成分均有響應,并且是等碳響應,適合用于VOCs總量監測,也可通過更換色譜柱材料等方式實現特征成分的檢測。
FTIR檢測技術因其光譜范圍寬,可同時檢測多種VOCs特征成分含量,響應速度快。
PID檢測器對低碳飽和烴響應較弱,且響應因子不一致,檢測器表面易受污染,不適合用于污染源VOCs在線監測。
依據美國標準“Method25A”和歐洲標準“EN 12619”的技術要求,規定固定污染源VOCs在線監測應采用GC-FID檢測技術,采樣探頭、樣品輸送管路和分析儀中樣品管路應采用120℃以上高溫伴熱,應選用抗腐蝕和惰性化的材料,以減少樣品吸附。
編輯:李丹
版權聲明:
凡注明來源為“中國水網/中國固廢網/中國大氣網“的所有內容,包括但不限于文字、圖表、音頻視頻等,版權均屬E20環境平臺所有,如有轉載,請注明來源和作者。E20環境平臺保留責任追究的權利。
媒體合作請聯系:李女士 010-88480317